этэ туучанив от ичиничанон, аррсан то станаатт ана гог ефааноны минён ев. 4278 т. эт, мин ре пеанел аз maipraeme

timportant Note ; 1. On completing vagir growers, compulsorits dean digramaterises fines on the compicion stand

First Semester B.E. Degree Examination, June/July 2017

Engineering Mathematics - I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least two from each part.

- Choose the correct answers for the following: (04 Marks)
 - The nth derivative of cos² x is

A)
$$2^n \cos \left(2x + \frac{n\pi}{2}\right)$$

B)
$$2^{n-1}\cos\left(2x + \frac{n\pi}{2}\right)$$

C)
$$2^{n-1}\cos(2x+n\pi)$$

D)
$$2^{n-1}\cos\left(\frac{n\pi}{2}\right)$$

ii) The Maclaurin's series of f(x) = K (constant) is

A)
$$f(x) = K$$

B)
$$f(x) = 0$$

D)
$$f(x) = K!$$

The value of C of the Cauchy mean value theorem for $f(x) = e^x$ and $g(x) = e^x$ in iii) [4, 5] is

A)
$$\frac{5}{2}$$

B)
$$\frac{3}{2}$$

C)
$$\frac{9}{2}$$

D)
$$\frac{1}{2}$$

The nth derivative of $y = x^{n-1} \cdot \log x$ is

A)
$$y_n = \frac{n!}{x}$$

B)
$$y_n = \frac{(n+1)^n}{y_n}$$

A)
$$y_n = \frac{n!}{x}$$
 B) $y_n = \frac{(n+1)!}{x}$ C) $y_n = \frac{(n-1)!}{x}$ D) $y_n = \frac{n!}{x^2}$

D)
$$y_n = \frac{n!}{x^2}$$

- b. If $x = \tan(\log y)$, prove that $(1 + x^2)y_{n+1} + (2nx 1)y_n + n(n-1)y_{n-1} = 0$. (06 Marks)
- Expand $\log(\sec x)$ by Maclaurin's series expansion upto the term containing x^4 . (05 Marks)
- State and prove Lagrange's mean value theorem.

(05 Marks)

(04 Marks)

2 Choose the correct answers for the following: a. $\lim_{x \to \infty} \left[a^{1/x} - 1 \right]$ is of the following form

A)
$$0 \times \infty$$

$$\mathbf{R}) \sim$$

$$C = 0$$

D)
$$\infty - \infty$$

If S is the arc length of the curve x = g(y) then $\frac{ds}{dy}$ is

A)
$$\sqrt{1+y_1}$$

B)
$$\sqrt{1+y_1^2}$$

C)
$$\sqrt{\left(\frac{dy}{dx}\right)^2 + \left(\frac{dx}{dy}\right)^2}$$

D)
$$\sqrt{1+\left(\frac{dx}{dy}\right)^2}$$

The angle between radius vector and the tangent for the curve $r = a(1 - \cos \theta)$ is

A)
$$\frac{\theta}{2}$$

B) $-\frac{\theta}{2}$

C) $\frac{\pi}{2} + \theta$

D)
$$\frac{\pi}{2} - \frac{\theta}{2}$$

iv) Two polar curves are said to be orthogonal if

A)
$$\phi_1 \cdot \phi_2 = 0$$

B)
$$\tan \phi_1 \cdot \tan \phi_2 = -1$$

$$C) \frac{\phi_1}{\phi_2} = \frac{\pi}{2}$$

D)
$$\phi_1 \cdot \phi_2 = -1$$

b. If
$$y = \frac{ax}{a + x}$$
, then show that $\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{y}{x}\right)^2 + \left(\frac{x}{y}\right)^2$ where ρ is the radius of curvature at any point (x, y) . (06 Marks)

c. Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{4^2}}$. (05 Marks)

d. Derive an expression for the radius of curvature in polar form. (05 Marks)

a. Choose the correct answers for the following: (04 Marks)

i) If $z = x^2 + y^2$ then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to

A) 0 B) 2 C) 2y D) 2x

ii) The Taylor's series of $f(x, y) = xy$ at $(1, 1)$ is

A) $1 + [(x - 1) + (y - 1)]$ B) $1 + [(x - 1) + (y - 1)] + [(x - 1)(y - 1)]$

C) $(x - 1)(y - 1)$ D) None of these

iii) If $z = f(x, y)$ then the relative error in z is

A) $\frac{\delta z}{x}$ B) $\delta z - y$ C) $\frac{\delta z}{z}$ D) $z - \delta z$

iv) If $x = r\cos\theta$, $y = r\sin\theta$ then $\frac{\partial (r, \theta)}{\partial (x, y)}$ is

A) r B) $\frac{1}{r}$ C) 1 D) -1

b. Find the extreme values of $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$. (06 Marks)

c. If $x = r\cos\theta$, $y = r\sin\theta$, prove that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 \right]$. (05 Marks)

d. The diameter and altitude of a can in the form of a right circular cylinder are found to be 4.5 cms and 8.25 cms respectively. The possible error in each measurement is 0.1 cm. Find the approximate error in the volume and lateral surface area. (05 Marks)

a. Choose the correct answers for the following:

i) The gradient, divergence, curl are respectively

A) scalar, scalar, vector

B) vector, scalar vector

C) scalar, vector, vector

B) vector, scalar vector

C) scalar, vector, vector

B) vector, scalar D) none of these

iii) curl grad ϕ is

A) grad curl ϕ B) curl grad ϕ + grad curl ϕ

b. If F = ∇(x³ + y³ + z³ - 3xyz), find divF and curl F.
c. Prove that curl (φF) = φ curl F + grad φ × F.

iv) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then curl \vec{r} is

C) zero

3

(05 Marks)

(06 Marks)

d. Prove that the cylindrical coordinate system is orthogonal.

(05 Marks)

D) ∞

D) does not exist

C)-1

(04 Marks)

${\bf 5}$ a. Choose the correct answers for the following :

		i)	The value of the integ	gral $\int_{0}^{\pi/2} \sin^{7} x dx$ is		
			A) $\frac{35}{16}$	B) $\frac{16}{35}$	C) $-\frac{16}{35}$	D) $\frac{18}{35}$
		ii)	$x^2 + y^2 = x^2y^2$ is symmetric about			
			A) x - axis	B) y - axis	C) $y = x$	D) All A, B, C
iii) The value of $\int_{0}^{\pi} \sin^{4} x dx$ is						
			A) $\frac{3\pi}{8}$	B) $\frac{3}{8}$	C) $\frac{\pi}{16}$	D) $\frac{\pi}{4}$
		iv) Asymptote to the curve $y^2(a-x) = x^3$ is				
			A) y = 0	B) x = 0	C) $x = a$	D) none of these
	b. Evaluate $\int_0^1 \frac{x^{\alpha} - 1}{\log x} dx$, $\alpha \ge 0$ using differentiation under integral sign, find $\int_0^1 \frac{x^3 - 1}{\log x} dx$					$\int_0^1 \frac{x^3 - 1}{\log x} \mathrm{d}x .$
						(06 Marks)
	c.	Obtain reduction formula for $\int_{0}^{\pi/2} \cos^{n} x dx$.				(05 Marks)
	d.	Find the surface area generated by an arch of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ about the x-axis. (05 Marks)				
6	a.	Choose the correct answers for the following: (04 Marks				
		i)	For the differential	I equation $\left[\frac{d^3y}{dx^3}\right]^2 +$	$\left[\frac{d^2y}{dx^2}\right]^6 + y = x^4 the$	order and degree
			respectively are A) 2, 6		C) 2, 4	D) none of these
ii) The solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is						
				B) $e^{-x} + e^{-y} = c$		
	iii) The integrating factor of the differential equation $\frac{dx}{dy} + Px = Q$ where					Q where P, Q are
			functions Y is			
			A) $e^{\int pdy}$	B) e ^{∫pdx}	C) $e^{\int Qdy}$	D) none of these
iv) If the differential equation of the given family remains unaltered					after replacing $\frac{dy}{dx}$	
		by $-\frac{dx}{dy}$ then given family of curves is said to be				
			A) not orthogonal	B) self orthogonal	C) reciprocal	D) none of these
b. Solve $xy(1 + xy^2) \frac{dy}{dx} = 1$.					(06 Marks)	
	c.	Solve	$e \left[x \tan \left(\frac{y}{x} \right) - y \sec^2 \left(-\frac{y}{x} \right) \right]$	$\frac{y}{x}$ dx + x sec ² $\left(\frac{y}{x}\right)$ dy =	= 0.	(05 Marks)
	d.		the orthogonal trajecto	× -1		(05 Marks)

10MAT11

(05 Marks)

d. Reduce the quadratic form $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_2x_3$ into sum of squares. * * 4 of 4 * *